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Summary—The dispersion properties and the fields of electro-
magnetic waves are investigated for propagation in a stratified in-
finite medium. The stratification is characlerized by a dielectric
constant which, along one coordinate, is modulated sinusoidally
about an average value. A systematic and comprehensive study is
presented for the case of A modes for which the pertinent wave equa-
tion is in the form of a Mathieu differential equation. The modes and
dispersion characteristics are analyzed in terms of a “stability”
chart, which is customary in the study of the Mathieu equation.
Results are obtained for an unbounded medium and for a waveguide
filled with the modulated medium. Also, the reflection occurring at
an interface between free space and a semi-infinite medium of this
type is examined. In addition to these rigorous results for arbitrary
values of modulation, simple analytical expressions are given for all
of these cases where the modulation in the dielectric is small. It is
shown that the fields are then expressible in terms of the funda-
mental and the two nearest space harmonics. The fields within a unit
cell in the stratified medium are calculated for both small and large
modulation and for frequencies up through the second pass band.
1t is of interest that the variation of the fields is not, in general, sim-
ply related to the variation of the dielectric constant within a cell.

I. INTRODUCTION

HE STUDY described herein deals with the prop-
Tagation of electromagnetic waves in a medium

possessing a dielectric constant which is sinus-
oidally stratified along one coordinate. The interest in
this specific problem was stimulated by several topics
to which the present work either has direct application
or serves as a basis for further developments.

A first area of application is concerned with electro-
magnetic wave propagation through a compressible
medium which is influenced by acoustic or other
mechanical waves. As an example, the results are appli-
cable to acoustically-modulated plasma media in the
range of frequencies above the plasma frequency w, A
second area of application regards the stratified medium
as a first step in the analysis of a sinusoidally-modulated
dielectric slab antenna which employs a layer of the
above mentioned medium. Aside from the motivations
and possible areas of application, the case investigated
is a canonical one in the theory of wave propagation in
periodic structures. The systematic and comprehensive
treatment contained herein of both the propagation
characteristics and the field distributions should there-
fore be of value in itself.
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The propagation of waves in periodically-stratified
media was discussed as early as 1887 by Lord Rayleigh,!
who recognized that this electromagnetic problem was
characterized by the Hill and Mathieu differential equa-
tions and who analyzed some of the properties of these
equations. It should also be mentioned that, both before
and after Lord Rayleigh, the Hill and Mathieu equations
were investigated in connection with other applications,
such as the vibrations of strings and sheets with specified
mass distributions, the trajectories of certain celestial
bodies, the oscillations of elliptic membranes and many
other related topics. At a later stage, the Mathieu equa-
tion was also considered in connection with modes
guided by elliptic waveguides, scattering by elliptic
cylinders, the theory of frequency modulation, scatter-
ing by periodic crystal lattices and many other physical
phenomena.

Most of the studies mentioned above were concerned
with the purely periodic type of solutions of Mathieu
and Hill's equations, while the nonperiodic solutions
were analyzed less extensively, These nonperiodic func-
tions relate to either stable or unstable physical con-
figurations. Among the earlier investigators, Strutt®
analyzed these functions, applied them to an atomic
grating subject to a periodic sinusoidal potential and
then briefly mentioned the significance and application
of the Mathieu stability charts. These stability charts
were considered in greater detail by van der Pol and
Strutt® in connection with particles in force fields which
are characterized by sinusoidal and rectangular periodic
variations.

A direct application of these stability charts to waves
in periodically-modulated media was made by Brillouin,*
who also pointed out the relationship between these
stability charts and the dispersion curves {or the modu-
lated media. The extensively-studied periodic solutions
to Mathieu's equation are found to apply only at the
band edges, while the nonperiodic functions describe the
behavior within the pass and stop bands. A portion of
the present paper also employs the stability charts to

! Lord Rayleigh, “On the maintenance of vibrations by forces of
double frequency, and on the propagation of waves through a me-
dium endowed with a periodic structure,” Phil. Mag., vol. 24, pp.
145-159; August, 1887.

2 M. J. O. Strutt, “Zur Wellenmechanik des Atomgitters,” Ann.
der Phys., vol. 86, no. 10, pp. 319-324; 1928.

3 B, van der Pol and M. J. O. Strutt, “On the stability of the solu-
tion of Mathieu's equation,” Phil. Mag., vol. 5, pp. 18-38; January,
1928.

¢ 1. Brillouin, “Wave Propagation in Periodic Structures,” Dover
Publications, Inc., New York, N. Y.; 1953.
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determine the dispersion characteristics, but treats the
problem in more detail and considers a number of addi-
tional aspects. This paper also includes detailed discus-
sions on features which have not been previously treated,
such as the properties of the various space harmonics
and the total field behavior under various conditions.
Explicit and simple analytic expressions for the dis-
persion characteristics and the field behavior in the
range of small modulation amplitude are also given here.

The present study starts with the consideration of the
wave equation in an infinite sinusoidally-modulated
medium, and it is shown that, for £ modes, this equation
may be cast into the form of a Hill's differential equa-
tion ; for H modes, on the other hand, the wave equation
is a Mathieu differential equation, which is a particular
case of Hill's equation. The discussion is then restricted
to H modes since these are described by the simpler
Mathieu equation. The properties of the Mathieu func-
tions and the electromagnetic modes which they repre-
sent in the present case are discussed in Section I1]
along with some examples of modes in bounded, rather
than infinite, structures. The aspects of small modulation
are treated at length in Section 1V and analytical re-
sults are presented. The field within a unit cell of the
stratified medium is calculated in Section V for both
small and large modulations; in addition, the detailed
field distribution within a waveguide filled with such a
periodically-modulated medium is plotted for a variety
of frequencies.

I1. ForMaL WAVE SOLUTIONS FOR H MODES

The geometry of the medium considered is shown in
Fig. 1. This medium is assumed to extend to infinity in
all directions and to possess a relative dielectric constant

Z

() = 67(1 — M cos 277> 1)

where ¢, is the average value of €(2) and M is termed the
modulation index. The medium can therefore be visual-
ized to consist of striations parallel to the xy plane and
spaced a distance 4 apart.

The wave equations to be satisfied by the field solu-
tions are then

V2E + Eyle(s)E = 0 (2)

Ve(z)
ViH + kole(2)H + -*E;)’— X (VX H)=0 (3)

where E and H are, respectively, the electric and mag-
netic field vectors, ko= w(uoey)/? is the intrinsic wave-
number of free space, and a time dependence et is
assumed.

The field may be represented in the form of super-
positions of H and £ modes, with

H modes: E = E,;
E modes: H = Hy;

H,=E,=E, =0
E,=H,=H,=0.
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Fig. 1—Geometry of the stratified (modulated) medium.

Furthermore, it is assumed that no variation exists
along the y coordinate (0/9y=0). Egs. (2) and (3) then
reduce to
V2E, + k() E, = 0 4
1 de(z) 0H,

VL, 4 Eole(z) Hy — ——
! wele) e(z) 0z 9z

(5)

Hence, (4) and (5) are, respectively, the wave equation
for H and E modes. Since (5) has a term which is absent
in (4), the latter equation is simpler and its solution is
more straightforward. In the present paper the treat-
ment is restricted to A modes.

Since (4) has coefficients which are functions of 2 only,
one may assume solutions in the form

E (%, 2) = Z(ky; z)ebe, (6)

From this separation of variables, one obtains from (4)
and (1)

d 2
[(E) ‘I‘ kuzér - kt2
2
— ko%e, M cos 27 —EZIZ(k,;z) =0. (7

It is convenient, at this stage, to introduce the following
notation:

k2 = Eole, — B (8)
M [ kod\?
=5 () )
X
¥ =7—> 2 =q—- (10)

The quantity «, is recognized as the propagation wave-
number in the z direction which would be present in a
uniform medium of dielectric constant ¢. When these
changes in notation are substituted into (7), one finds

[(di’ )2 + <K;d>2 ~ 2g cos ZZ'JZ(kt;Z) =0. (11)
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This last equation is the canonical form of Mathieu’s
differential equation; its solutions may be expressed in
the Floquet form

Z(ks; 2) = et P(k;; 3) (12)

where P(k,; z) is periodic in 2 with a periodicity of d.
The term « is termed the characteristic exponent and is
a single-valued function of both k, and ¢; « is clearly a
propagation wavenumber for waves traveling in the + z
direction, and only the positive sign need be retained in
(12) in order to determine the modes in the given infinite
geometry. The periodic function P(k;; 2) may next be
expanded in the Fourier series

=]
P(kt; 7) = Z aein@rid)z

n=—w0

(13)

where the coefficients @, =a,(k;) are dependent on the
separation variable k,.

One realizes that when no modulation is present
A =0, and therefore ¢ in (11) also vanishes. Then all the
coefficients a, vanish except ay, and k becomes k=k,;
hence (8), z.e.,

= ke — k2

represents the dispersion relation for the unmodulated
medium. For finite values of M, on the other hand, the
dispersion relation is more complicated and is obtained
in the following manner.

Introducing (13) into the Mathieu equation (11), one
obtains

=) -G

— q(e‘uz’ + 6-212’)]0 e2inz’ = (), (14)

Since the above must hold for any value of 2/, (14) can
be written as an infinite set of homogeneous equations
in the form

An—1 + Dnan + apyt = 0 (15)
where
d 2 Kud
(Zro) - ()
g ‘m
D, =
q
< n 2127)2 .
) -2
Ty
= . (16)
Mkozér/z

Employing an iterative process on (15), one obtains the
two continued fractions®®

N W. McLachlan, “Theory and Application of Mathieu Func-
Oxford Unner51ty Press, Oxford, England; 1951.

6 J. Meixner and F. W. Schafke “Mathieusche Funktionen and

Spharoidfunktionen,” Sprmger-Verlag, Berlin, Germany; 1954.
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b J ! J (17a)
an—1 n+1
G _ _ _J ’___‘ F—J (17b)
Qni1 n~ n-2
which, when combined, yield
_l .
n+1 Dn+2
Ao
+ . 54 (18)

The last expression is the required dispersion relation
since it is essentially an equation for k=f(x,, ¢). The
continued fractions involved in (17) and (18) can be
shown® to converge if ]Dﬂl >2 for n> N, where N is a
finite integer. An inspection of (16) shows that this con-
dition is always satisfied for the case considered here.
The value of x may therefore be computed for any given
k. and g; a calculation of this type is given elsewhere.”
When the appropriate value of x is thus obtained, all the
possible field solutions are known by means of (6), (12),
(13) and (17).

Calculations for the dispersion relation (18) are very
scarce in the literature. When xd/w=r (r=0, =+1,
+2, - ), the solution given by (12) is termed a
Mathieu function. These functions are of special interest
for problems involving elliptic geometries and they have
been extensively tabulated.® However, for «d/7 not an
integer or for complex values of this variable, very few
tabulations have been carried out;%? also, these calcu-
lations were performed for restricted ranges of the
parameters ¢ and ., so that their application is some-
what limited.

I1I. CHARACTERISTICS OF THE H MODE SOLUTIONS

In Section II the wave solutions for H modes were
found to be of the form

oo
Ey(x,2) = D, a,ehegime

Nn=—c0

(19)

where

2nm

d

Kn = K

(20)

and the coefficients a, are determined from (17) in terms
of ao. The evaluation of @, itself is dependent on a
normalization condition.

7T, Tamir, “Characteristic exponents of Mathieu functions,”
Math. Comput., vol. 16, pp. 100-106; January, 1962.

8 National Bureau of Standards, “Tables Relating to Mathieu
Functions,” Columbia University Press, New York, N. Y.; 1951.

S T, 7aroodny “An Elementary Review of the Mathieu- Hlll
Equation of Real Variables Based on Numerical Solutions,”
Ballistic Research Lab., Aberdeen Proving Ground, Md. Memo.
Rept. No. 878; April, 1955,
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Eq. (19) is a solution of the wave equation (4) and
therefore represents a mode of propagation in the z
direction for the medium considered when the “trans-
verse” wavenumber k; is prescribed. Alternatively, when
k and d are prescribed, solution (19) represents a mode
of propagation in the x direction (along the striations)
with propagation wavenumber %; The former mode
evidently consists of an infinite but discrete number of
space harmonics, each such space harmonic being in the
form of a plane wave propagating at an angle

Kn

0, = tan~! —
3

(21)

with respect to the xy plane, provided both «, and k. are
real. When either x, or k;is imaginary, the waves have
an amplitude which must decay in the z or the x direc-
tion, respectively. One also notes from (19) and (20)
that the propagating or decaying character of the waves
is the same for each and every space harmonic.

The relation between k., ¢ and « can be illustrated in
the form of a “stability diagram” which is customary in
the study of the Mathieu equation.*~® This chart may
be computed from relations given in the preceding sec-
tion and described elsewhere.” The relation between the
parameters k., x and ¢ is then shown in Fig. 2.9 The
shaded areas in Fig. 2 are the so-called “stable regions”
wherein « is pure real, as indicated in the figure. The
term “stable regions” refers to the fact that, if « lies
within such a region, the solutions of the Mathieu equa-
tions are bounded for any z. Outside the stable regions,
k is complex and its value is

fr= ot i (m=0,1,2,+-") (22)

\
TR
1 }
-2 -l
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.
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2
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Fig. 2—Mathieu stability diagram. The curves in the unstable
(unshaded) regions are approximate.

10 The stability diagram is seen to consist of curves drawn in a ¢
vs (kud/7)? with xd/z itself as a variable parameter. To abbreviate
the notation, this diagram will be referred to, in the discussion below,
as the ¢ vs «, [rather than (x.d/#?%)] diagram.
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where m is the value of | kd/7| at the boundaries of the
appropriate regions and « is pure real. The + sign for
k in (22) is due to the fact that the curves in Fig. 2
essentially determine relationships for «? rather than «.
These regions with complex values of « are termed “un-
stable” in the literature since one of the values for «
yields solutions which are not bounded at infinity. It
should be recognized, however, that the term “unstable”
is not appropriate; in actual physical situations wherein
the fields extend to infinite values of 2, a radiation con-
dition is required which then merely means that the un-
bounded solution is rejected and only the decaying one
is retained.

It is noted that the value of « for the stable regions is
given by

kd

m < <m+1 (m=0,1,2,---) (23)

™

so that the value of m may label the appropriate regions,
with m =0 denoting the region containing the origin,
while increasing values of m refer to regions which are
progressively removed from the origin,

To obtain some insight into the character of the
modes given in (19), let us now look at a specific case
as prescribed by specific values of €, M, d and k,, while
k; varies, It is then clear, from (9), that this specifies a
value of g which is constant, and one therefore needs to
consider points along a line parallel to the «, axis, such
as the dot-dashed line shown in Fig. 2.

For very large real values of k,, the relevant point for
k is in the unstable region to the left of the curve k=0.
Hence, from (22) with m =0, one has a field with an
exponential term in 2. In general, the solution in an un-
stable region may be written

Z(ks; ) = e~ GID P(ky; 2)

= e~z P(ky; 7) (24)

where P(k.; 2) is a periodic function in z with period d
or 2d for even or odd values of m, respectively. For
simplicity, only the positive sign for « is considered in
(22), so that (24) refers to a wave progressing in the
positive z direction; the expressions pertaining to waves
progressing in the negative z direction may be derived
by a suitable change in the sign for . It can be shown?*5-11
that I'\’(k,; z) is either a pure real or a pure imaginary
function, but is not complex. Consequently, the Fourier
harmonics in P(k.; 2) couple in pairs and form a standing
wave.

Hence, in all unstable regions, the modes are in the
form of an exponentially damped standing wave in the
z direction and are propagating in the x direction only.
This type of wave therefore consists of space harmonics
which couple in pairs so that they propagate along the

. BT Tamir, H. C. Wang and A. A. Oliner, “Wave Propagation in
Sinusoidally Stratified Dielectric Media,” Dept. of Electrophysics,
fi)éitgghmc Inst. of Brooklyn, N. Y., Research Rept. No. PIBMRI-

-63; 1963.
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striations. It is noted also that the wavenumber for each
harmonic is given from (20), with only the positive sign
being retained, by
is
kn = (2n + m) 7 + 1a, (25)
so that the attenuation coefficient « is the same for
every space harmonic.

When the value of k;is decreased, one reaches a value
for which the dot-dashed line intersects the k=0 line;
the field then has the form of a pure standing wave with
no decay along 2, and with propagation still along the
striations.

As k; further decreases, the first “stable” region is
reached in which k becomes real; the harmonics then
propagate in both the x and z directions at angles deter-
mined by (21). By still further decreasing k, one again
crosses unstable and stable regions and the waves have
the properties of the cases previously discussed. The
number of regions thus crossed is dependent on the
value of k¢, since, as k=0, x,2=Fk%, and the point
of interest cannot go beyond this value unless %, becomes
imaginary.

In order to obtain a clearer picture of the above fea-
tures, it is worthwhile to consider the waves which
would be excited in the periodically-modulated medium
by some typical sources. The following two cases are
physically significant.

A. Line Source Excitation

An electric current line source is assumed to be present
parallel to the y axis and located at x =0 and z="/ in the
infinite medium of Fig. 1. The field of such a source may
then be expressed by the Fourier integral representation

0
Z aneucnl Z—hldkt

fi=—00

Eo 9 = [ e 26)

where, to satisfy the radiation condition, the - sign
must be taken in (22); f(k:) is an amplitude function in
terms of %k, Both uniqueness and completeness of the
above representation are satisfied if the integration in
(26) is carried out along the real k, axis, in agreement
with the theory of Fourier transform representations.
The field is therefore properly visualized as being made
up of the waves previously considered, when k, varies
between infinity and zero.

One therefore concludes that the field of a line source
consists of a continuous spectrum of modes character-
ized by the transverse wavenumber k;. Each mode con-
sists of space harmonics in the form of plane waves. All
of the space harmonics associated with any one particu-
lar mode either propagate along the striations or travel
at various angles with respect to these striations. In the
latter case, the plane waves are homogeneous; in the
former case, the fields decay away from the striations
closest to the source, this decay being the same for all
the harmonic components.
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The total energy radiated by a line source therefore
contains a part which is guided along the striations;
consequently, the region formed by the striations closest
to the source acts as a duct. This is not unexpected,
since it is known that a dielectric slab may guide surface
waves. However, in the case considered here, the waves
which are guided along the striations {form part of a
continuous set rather than the discrete surface wave
contributions that occur on a single dielectric slab.

B. Plane Wave Excitation

One cannot assume the existence of a single homo-
geneous plane wave in the modulated medium since
such a wave is not a solution of the pertinent wave
equation (4). Nevertheless, one may consider that such
a plane wave is incident on a semi-infinite medium, as
shown in Fig. 3, and thereby excites a field in the me-
dium considered. The modulated medium is taken to
extend only for positive values of 2, and a plane wave
is assumed to be incident at an angle 8 on the xy plane
interface from a medium with a relative dielectric con-
stant €. Since H modes are considered, the electric
vector E is taken parallel to the interface between the
two media at 2=0. No attempt is made here to solve the
complete problem; only the character of the field in the
modulated medium is considered.

Foi €€ o €l2)

Fig. 3—Geometry of the semi-infinite modulated medium.

In contrast to the line source problem, the present
situation has a fixed value of &, given by

ki = kov/ e sing 27
which vields, from (8),
K, = ko(er — €1 sin? 6)1/2, (28)
Let us introduce the angle ¢ shown in Fig. 4 as
tan ¢ = g<—7r—>2 = %-—ﬁ{——*—; (29)
Kl 2 €1
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Fig. 4—Graphical construction to obtain dispersion curves in terms
of a given incidence angle.

using (28) and definition (9) for ¢. The locus of wave-
numbers k which are excited in the modulated medium
is therefore given by a straight line through the origin
and at an angle ¢ with respect to the («x,d/7)? axis. Then,
as frequency varies while A and the incidence angle 6
remain constant, x, and ¢ vary along this straight line
and the appropriate value for x may be read off the
q vs k, diagram of Fig. 4.

One may then obtain a dispersion curve for any
specified values of A and §. Real values of « will cor-
respond to solutions which propagate across the stria-
tions, while complex values of x correspond to exponen-
tial decay, thus resulting in pass and stop bands, re-
spectively, for propagation perpendicular to the
striations.

The following cases are then relevant:

1) M =0: When no modulation is present, ¢ =0, the
locus for the dispersion curve runs along the positive
real k,? axis and no stop bands occur for ¢, > ¢. This re-
sult is obvious since, if M =0, the medium to the right
of the interface is an ordinary dielectric into which
waves are propagated by ordinary refraction of the in-
cident wave. For ¢ <ei, certain angles # will make the
expression for tan ¢ in (29) negative. Then no propa-
gation occurs for any frequency since the dispersion
curves run along the negative real «,? axis. This situation
obviously occurs at and above the critical optical angle
for which total reflection of the incident wave is
obtained.

In order to disregard the possibility of total reflection,
the following cases are taken for & <e, only:

2) M<«1: The angle ¢ is then very small and one
obtains broad pass bands and narrow stop bands, as
shown in Fig. 5. The latter bands occur in the neighbor-
hood of frequencies whose free-space wavelength A\, is
given, from (28), by
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Fig. S—Dispersion curves (Brillouin diagram) for the semi-infinite
medium: e, =¢-; tan ¢ =M /2 cos? #=0.1.
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Fig. 6—Dispersion curves (Brillouin diagram) for the semi-infinite
medium: e =¢; ¢=tan™? (M /2 cos? §) =30°,

2d
A= —+¢ — € 5in%h
m

(m=1,2,3,--.). (30)
This result is analogous to the Bragg effect in crystal
lattices.

3) M <1:The angle ¢ is no longer small and the stop
bands increase in width, as shown in Fig. 6 for a value of
$=30° It is realized that for ordinary dielectrics
€(2) = 1, which yields, from (1),

& — 1

M <

(31)
€r

This condition implies a maximum value of ¢ for any

incidence angle 8 and dielectric constant e.

It is recognized that for plasma media €(z) may be
less than unity or even negative; however, these values
of the relative dielectric constant are a function of fre-
quency. The above geometrical construction for finding
the dispersion curves has assumed that e(2) is independ-
ent of frequency so that, for plasma media or other dis-
persive media, this procedure would have to be modified.

4) M=0; 0—7/2: As the angle of incidence 8 reaches
a value of 7/2, the angle ¢ takes on the maximum of
¢ =m/2. The pass bands then become very narrow while
the stop bands are relatively very broad.

The above results show that the dispersion curves for
plane wave excitation are similar to those for customary
periodic transmission lines. It should be noted that the
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dispersion curves for the medium discussed here may
be found exactly from the ¢ vs «, diagram; for most
examples of periodic transmission lines, however, the
dispersion curves are found only by assuming certain
simplifying approximations which are necessary in view
of the greater complexity of the problem.

C. “Wavegurde” Excitation

In Sections I1I-A and III-B, the waves considered
were those for which the transverse wavenumber %; is a
function of frequency. In waveguide practice, the usual
approach is to have &, prescribed by the boundary con-
ditions in the cross section. For an infinite medium, the
wavenumber k, is continuously variable and the ap-
proach in Sections III-A and III-B is appropriate.
Nevertheless, it is of interest to consider the case in
which the modulated medium is contained between two
conductors, both parallel to the yz plane, as shown in
Fig. 7. The propagation direction is clearly the z direc-
tion, and the medium is uniform in the xy cross section,
with the same value of k; applicable for all values of z.
Since the electric field is parallel to the y direction, the
field distribution and the propagation characteristics
are unaffected by the placement of two additional per-
fectly conducting planes at right angles to the first
two, forming a rectangular waveguide. The pertinent
mode set in this rectangular waveguide is that of the
H,s modes. It is shown below that some propagation
features appear here that are absent for the infinite
medium.

One recognizes, for the geometry of Fig. 7, that the
wavenumber k; cannot vary continuously but has only
the discrete values

ke = — (72071:27"')' (32)

To obtain dispersion curves for this case it is easily seen
that, as frequency varies, the quantity

m\? q M

tan ¢’ = <—> =

d/) w?+ kel 2

is a constant for any given M. Eq. (33) is then the

equation of straight lines as shown in Fig. 8. This case

is similar geometrically to that for plane wave excita-

tion, discussed previously, except that the straight line

is shifted from the origin. In addition, an entire family

of such lines must be considered in order to accommo-

date the various values of %, all these lines being
parallel to each other.

The values for the dispersion curves are now read off
from Fig. 8 in the same manner as those obtained for
plane wave excitation. It is clear that now the first pass
band starts at a finite, nonzero frequency. When M0,
this is the cutoff frequency of the unmodulated wave-
guide. For AIs£0, the first pass band starts at a fre-
quency which is lower than the cutoff value for the un-

(33)
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modulated dielectric.

Fig. 8—Graphical construction to obtain dispersion curves for the
waveguide filled with a wodulated medium.

modulated waveguide. This feature is present for all the
modes and is determined only by the shape and slope of
the k=0 curve in the ¢ vs x, diagram, as may be seen
by inspection of Fig. &.

The above behavior is illustrated in Figs. 9 and 10,
which show dispersion curves for the first mode (k;= k)
for various values of M. It is clear that the arguments
associated with (31), limiting the value of Af, are also
applicable here, and that ¢’ is correspondingly limited.
It is then obtained that, in the limit of e, very large,
M =1 and the maximum value of the angle ¢ is given by

(34)

tan ¢’Imax = '%

The dispersion curves for this specific angle are given
in Fig. 10(a).

As noted above, when A0 propagation is possible
at frequencies for which the guide containing an un-
modulated medium would be below cutoff. This behavior
is evidenced in Fig. 10(b) in which the variation of &, vs
x is shown. The lower part of the curve then cor-
responds to propagation in the modulated guide for
which «, is imaginary, 4.e., if no modulation were present
the wave would be below cutoff.
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Fig. 9—Dispersion curves (Brillouin diagram) for the waveguide
filled with a modulated medium: M =0.2; kd=.
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Fig. 10—Dispersion curves for the waveguide filled with a mod-
ulated medium: M=1.0; kd==. (a) Brillouin diagram. (b)
Propagation wavenumber x in the waveguide containing the
modulated medium vs propagation wavenumber «x, in the un-
modulated waveguide.

IV. ANALYTIC RESULTS FOR SMALL MODULATION

So far, the entire discussion of the wave features for
a modulated dielectric medium followed from graphical
constructions based on the ¢ vs «, diagram which in-
directly characterizes the functional properties of the
modes in such a medium. One may also wish to obtain
these results in an analytic form; however, because of
the Mathieu functions involved, a simple analytic result
is not obtainable unless some simplifying restrictions are
imposed.

In this section certain restrictions are stipulated so
that practical analytic expressions are obtained for the
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dispersion relation and the amplitudes of the various
space harmonics. One may then derive complete analytic
solutions for the problems of an incident plane wave on
the semi-infinite modulated dielectric, treated in Section
IT1-B, and for the waveguide containing that dielectric
discussed in Section III-C. The restrictions are, how-
ever, of such a nature that these results apply to the
pass bands only, and then not too close to the band
edges; in addition, the modulation index must be re-
stricted to sufficiently small values. For more complete
results, appropriate for less restrictive conditions, see
Wang and Tamir.*?

A. Approximate Relations for the Pass Bands

An inspection of the Mathieu stability diagram
(Fig. 2) reveals that, within the stable regions (pass
bands) and for small values of ¢, « is real and very
nearly equal to k.. One may then write

kd  Kkud
= + A

K ™

(35)

where A is a very small quantity. Then, for D, of (16),
an(k,d/m + n)

q
2k,.d
o 52 A (37)
qm
Since ¢ was assumed to be very small, one has that
| D.] >1 (0, (38)

so that the dispersion relation (18) becomes, to a first
approximation,

1 1

Dy —+
Dl D).I

: (39)

Result (39) implies that one need retain only three space
harmonics (z=0, +1) in the dispersion relation. By
introducing (35), (36) and (37) into (39) and retaining
first terms only, one obtains this dispersion relation in
the form

1 T g\*
14— ———-——> :
Ky 1 — (xd/m)?\Kud 2
This result for the dispersion relation is valid in the pass
bands only, and not too close to the band edges; its ac-
curacy is discussed quantitatively by Wang and
Tamir.12
One recalls that ¢, which is defined by

d2
—ou( Y,
e (x)e

is assumed to be small for the above calculations. One
sees that this condition is satisfied either by small values

(40)

(41)

2 H. C. Wang and T. Tamir, “Closed form dispersion relations
for a sinusoidally stratified medium,” to be published.
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of M or by small values of d/\. Hence, if d/AK1, the
modulation in the dielectric may be quite appreciable.

Since, to the approximation above, only the funda-
mental and the +1 and —1 space harmonics need be
retained, the total field of a mode characterized by k; is
given by the first three terms in (19), namely,
E,(x, 2)

ai a1
= goeitutes) [1 4 gimide 4 e~z<27r/,l)z:|_ (42)

ao agy

In view of condition (38), only the first term need be
retained in (17), so that one obtains for the ratio of
amplitudes

a q 1
—_—=— ey (43)
ay 4 (14« d/m)
_ 1
G4 . (44)
ao 4 (1 — x,d/7)

When (43) and (44) are substituted into (42) and terms
are combined, the expression for the field becomes

|_ 2 kud | 2w
COS—=&2 — 1 SIn—2
Ey(x, 2) g1 T
W(%,8) =a -
v °|_ 2 1 — (kod/m)?
. pilkertes) (45)

where « is given by (35) and (40).

With no modulation present, k=&, and ¢=0 so that
(45) is reduced to the simple form of a plane wave
traveling at a certain angle. When the medium is per-
turbed by the introduction of a small modulation, the
change is reflected in the term containing ¢ in (45). The
perturbation may then be regarded as a small sinusoidal
variation of the amplitude of the unperturbed wave.
This variation is the same within every cell of period d
and is the form of a sinusoidal curve which is shifted
from the origin. The actual shape of the field within a
cell is discussed in Section V, in which the field is also
calculated numerically.

One notes that, for given parameters €, M, &, and w,
the solution for the field is generally obtained from (45)
since the other parameters (x, and ¢) are given in terms
of the prescribed constants. The value of a, is deter-
mined from a normalization condition or may be arbi-
trarily set to equal unity. Of course, the result thus
obtained is valid only if the prescribed parameters e,
B, kb, and w satisfy the restriction regarding small values
of ¢in (41).

It is emphasized that all of the above results hold
within the pass bands only and are not applicable to
the stop bands. For the latter, « is complex and it may
be shown®®!112 that the amplitude of some particular
harmonic is always equal to that of the fundamental
wave (ao) in the stop band; large errors may then result
if only the 0 and +1 space harmonics are retained. For
approximations and analytic results for the band edges
and for the stop bands, see Wang and Tamir.*
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B. Plane Wave Excitation

Result (45) may now be applied in order to obtain a
complete solution to the problem of Section III-B in
which a plane wave was incident from an unmodulated
medium upon a modulated one, as shown in Fig. 3.

In this case, the boundary condition at =0 is satis-
fied by a single mode specified by (27), so that the field
in both regions is completely determined by a reflection
coefhcient T' at the interface. This reflection coefficient
is given by

_Zy(0) — 7,
 Z,(0) + 7y

where Z; is the characteristic impedance of a trans-
mission line in the z direction representing a wave
traveling in the unmodulated medium (z <0), and Z,(0)
is the impedance loading that line at z=0. Recalling
that we are dealing with H modes, one has

(46)

Wi Wi
Zl = —

= = 47
k. ko e cosé (7)

The impedance Z»(0) may also be viewed as a character-
istic impedance for the modulated medium, but asso-
ciated with a particular choice of unit cell, z.e., the inter-
face between the two media specifies one end of the unit
cell (the other is determined by the periodicity). A dif-
ferent location of the interface (with respect to the
modulated medium) would result in a different equiv-
alent characteristic impedance. We recognize that in the
modulated region there exists only a forward-traveling
wave, so that

EUZ(xa Z)

)

(48)

where the subscript 2 indicates the modulated region
(2>0) and the negative sign arises because of the co-
ordinate system chosen. The magnetic field H(x, 2) is
given by

1 8F,(x, 2)

Ho(%, 2) = — —

49
W 0z (49

The electric field E,(x, z) in the modulated region may
be written in the form (45) in which only terms to the
order of ¢ were retained. Hence, we find from (45), (48)

and (49) that
|— 2 ikud | 2w —l
cos—d—z — ——gin—2

w T d
25 = Iﬁl_l RO T T 0] 60

where terms to the order of ¢ only were retained. One
also notes from (40) that k and «, differ by a term in ¢?,
so that they were taken as x=rx, when obtaining the
result of (50).

It is observed that Z,(z) is approximately equal to the
characteristic impedance wu/k, of an unmodulated
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medium since the second term containing ¢ is small. To
find the reflection coefficient in (46) one needs

20 =+ il

When the value of Z;(0) is introduced into (46), the
field may be found everywhere. Hence, to within the
approximations considered here, one can obtain a com-
plete solution for the problem of a plane wave incident
on a semi-infinite modulated dielectric.

In particular, it is interesting to find the reflection co-
efficient when the dielectric constant e for the un-
modulated medium is equal to the average dielectric
constant ¢, in the modulated one. Then, for e =¢,, one
has

(1)

ke = ks = ko/ € o8 0, (52)
which yields a reflection coefficient
2
qa/ (53)

r=_4"=__ .
(kyd/m)? — 1

Hence, the reflection from the entire semi-infinite modu-
lated region is of the order of g.

We recognize, from definition (1) for the variation of
the dielectric constant in the modulated medium, that
the reflection coefficient solved for above corresponds to
an interface described by Fig. 11(a). If, on the other
hand, we were interested in an interface of the form
shown in Fig. 11(b), it would be necessary to evaluate
Zs(2) in (50) at 2=d/4 rather than at 2=0. For such an
interface, then, we find

|’ K d
i -q

Za(d/4) = ‘% L1 + 1—_(’;7/;); (54)
and
T Kud
ERE
(35)

I‘ —_——
1 — (x,d/7)?

when €; =¢,. At low frequencies, where «,d is appreciably
smaller than m, the reflection from the interface of
Fig. 11(b) is seen to be less than that for Fig. 11(a), in
agreement with intuition.

If the dielectric constant variation were as in Fig.
11(a), but inverted at the interface, we would find that
the reflection coefficient magnitude is the same as that
for (53), but that the phase is different by m, as we
might expect. It is evident that the interface may be
chosen to correspond to any point in the modulated
medium, and that the above analysis can be extended
in straightforward fashion to include the case of an arbi-
trary slab of this modulated medium.

The above results also hold for the case of the wave-
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Fig. 11—Variation of the dielectric constant near the interface of the
semi-infinite modulated medium. Two different interface situa-
tions are shown.

guide containing a modulated dielectric which was con-
sidered in Section III-C, by simply taking %; as the
actual cutoff wavenumber in the waveguide rather than
the value used in (27). One can therefore solve the
problem of wave propagation in such a waveguide for
infinite, semi-infinite or finite lengths of the modulated
medium,

V. THE F1ELD DisTRIBUTION WITHIN A UNIT CELL

Most of the above discussions were concerned with
the over-all, or macroscopic, propagation character-
istics of waves in these modulated media. In order to
obtain a more complete picture of the properties of
these waves, this section considers the detailed field
distribution within a unit cell of the sinusoidally-
modulated medium. These calculations show that varia-
tion in the form of the fields as the {requency is changed
and demonstrate that the field distribution need not
follow the spatial variation in the dielectric constant.

In order to determine the variation of the electric
field within a cell of length d in the sinusoidally-
modulated medium, a specific dielectric is chosen, char-
acterized by arbitrary but constant values of ‘¢, d and
M, with the frequency w taken as the variable. To gain
some insight into the shape of the field for a given mode,
we shall first discuss certain relations between the am-
plitudes of the space harmonics and then explore the
field shape in the range of small modulation index 1.
We will find that the field distribution varies consider-
ably from omne pass band or stop band to another. Be-
cause of the availability of relationships between the
harmonic amplitudes in the stop bands, we will first
examine the field behavior there and then proceed to the
pass bands.

For an unmodulated medium (M = 0), only the funda-
mental space harmonic is present while all the other
harmonics are zero (a,=0 for ##0). For small modu-
lations, all the harmonics are, in general, nonvanishing.
In the stop bands (unstable regions), it can be shown!1:12
that the fundamental and the —mth harmonic are equal
in amplitude in the mth stop band. In addition, numeri-
cal analysis shows that the other space harmonics de-



1964

crease in strength as their harmonic number # is further
removed from either the fundamental or —mth har-
monic, while their amplitudes are equal in pairs; 7.c.,

(56)

[l = la-emmn

These properties are summed up in Fig. 12 which dis-
tinguishes between the following two cases: 1) For m
even, the harmonics are equal in magnitude in pairs,
except for the —m/2 harmonic which does not couple to
any other one. This harmonic is zero in magnitude on
the left edge of the unstable region in the ¢ vs «, diagram
and is finite on the right edge (these correspond, respec-
tively, to the lower and upper edges of the stop band on
a Brillouin diagram). 2) For m odd, the same behavior
is present except that there is no uncoupled harmonic
and none of the harmonics has a vanishing amplitude.

The electric field may be written as

o0
E(z) = gixz Z a,e2nm (28 = A(Z)ez‘¢(z)

=—200

(57)

where A4 (2) and ¢(z) are, respectively, the amplitude and
phase shift of E(z). One then obtains for the amplitude

oo
IA(Z)|2 =|: E ane2in7r(z/d):|
N=—00
o0
,[ Z an*e—Zinw(z/d):l,e—ﬂaz

n=—on

= | 4,(z) [pe e (58)

where 4,(3) is the periodic part of 4(z).

In the first unstable region (m=0), the two sets of
lines between #=0 and #= —m in Fig. 12(a) coalesce,
with the result that the #= —m =0 harmonic results in
a relatively large constant value for IA,,(Z)| and the
+1 and —1 harmonics vield a small sinusoidal wave of
period d superimposed on this constant value. For small
31, the higher harmonics add insignificant contribu-
tions.

For all the other unstable regions (m>0), the dom-
inant terms in (58) are obtained as follows:

l ‘41’(2) 12 — [GO + awme—szr(z/d)] [al)* _j[__ a_m*ez'[m'/r(z/d)]

=2]a0]2

o ()]

One has again a constant term and, in addition, a sinus-
oidal wave of period d/m. Also, since |a_n| =]ao|, as
shown in Fig. 12, the amplitude vanishes » times within
a period d. The phase term arg (a-n./ao) varies as one
goes from one edge of the stop band to the other, so that
the field pattern within the cell would seem to shift
across the cell as a function of frequency within the stop
band. The next better approximation would include the
n=+1 and n= —m-+1 harmonics which yield three
sinusoidal variations [of period d, d/(m+1) and

(59)
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Fig. 12—Amplitudes of the spacec harmonics in an unstible region
(stop band). (a) m even. (b) m odd.
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Fig. 13—Field distribution for the third pass band or stable region
(located between the unstable regions characterized by m=2
and m=3).

d/(m—1)]. To the periodic variation of 4 ,(z), one has to
add the exponential decay of e~ in order to obtain the
actual variation of A(z).

In the stable regions (pass bands), noting that all g,
are pure real and that =0, one obtains for (58)

el o
[ 4(2) 2= 3 a, >, aprcosla(n—7) -z (60)
n=—c0 Fe=—00 a

This is an even periodic function z; however, the various
harmonics do not pair off in a manner similar to that of
the unstable regions described in Fig. 12. Since |4 (s)]
still possesses the properties discussed above at the edges
of the pass band, we recognize that as one goes through
the mth pass band from one edge to the other, the shape
of the field must vary continuously from a periodicity
of d/(m—1) to a periodicity of d/m. This behavior is
illustrated in Fig. 13.

Although the discussion above was carried out on the
assumption that 3 is small, the periodicity features
must be present even for large values of 1/. However,
the shape of the field would then differ markedly from
the simple constaut and sinusoidal variation obtained
in (59) since the additional harmonics may affect this
basic shape considerably.
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(kyd/m)?

a. kd/ T

A 0.2 -2.4 1. 551

B 0.7 -0.4 0. 461
C 0.735 -0.26 0.0

D 0.8 0.0 0,677
E 0, 825 0.1 1,0

F 0.83 0.12 1-0,1051
G 1. 05 L0 1-0.47i
H 132 2,08 1.0

I 1.48 2,72 L5

J 1,738 3,752 2.0

Fig. 14—Parameters for the computed fields. Points 4 to J relate to
the fields shown in Figs. 15 and 16.

To illustrate the various features discussed above, the
shape of the electric field was calculated for a loaded
waveguide of the type described in Section III-C. The
parameters chosen and the wvarious frequencies for
which the calculations were made are shown in Fig. 14,
The results obtained are illustrated in Figs. 15 and 16;
these figures show the variation of the electric field as
the frequency is varied so that the particular mode
starts in the first unstable region and goes through
stable and unstable regions up to the farther edge of
the second stable region. The regions correspond physi-
cally to the frequency range below cutoff of the loaded
waveguide, the first pass band, the first stop band, and
the second pass band. In the unstable regions (below
cutoff and in the stop band), the amplitude distribution
shown corresponds to the periodic part !Ap(z)[ of the
electric field amplitude; the total amplitude [.4 (z)\ is
represented by the dashed lines.

One notes {rom these figures that the field changes
continuously as the point of operation goes through the
various regions; the general character of the field is
clearly in agreement with the above qualitative analysis.
It is interesting to note that although the modulation
index chosen was not small (M =0.5), the features dis-
cussed previously are nevertheless strongly present.

As predicted, we find that the amplitude within the
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Fig. 15—Variation of the field in the first unstable (stop band) and
the first stable (pass band) regions. Situations 4 to E are defined
in Fig. 14. The e(2) curves represent the actual variation in
dielectric constant. Full and dashed lines refer, respectively, to
|4(z)| and |Ap(s)| [see (58)].

stop band (diagrams E, F, G and H of Fig. 16) goes
through zero once (since m=1) within a period d, and
that within this stop band the pattern essentially main-
tains its form but shifts across the cell as we go from one
edge of the stop band to the other. At A, additional
space harmonics become significant, thus altering the
field distribution somewhat. The same behavior is also
present within the below cutoff region (diagrams 4 and
B of Fig. 15), but it is less noticeable there. The approxi-
mate analysis involving only the dominant space har-
monics yields for the below cutoff region a constant
amplitude only (since m=0); the sinusoidal variation is
due to the next higher (= +1) space harmonics.
Within the pass bands the behavior also corresponds to
that predicted by the above analysis. The amplitude
distribution is an even function of position within the
cell and, as one goes from the lower edge of the band to
the higher edge, the field form for the first pass band
(diagrams C, D and E of Fig. 15) varies from a constant
(m =0, but modulated by the higher space harmonics)
to a wave with one zero within a period 4 (m=1), and
the field shape for the second pass band (diagrams H,
and J of Fig. 16) varies from a wave with one zero per
period (m=1) to one with two zeros (m=2),
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Fig. 16—Variation of the field in the second unstable (stop band)
and the second stable (pass band) regions. Situations E to J
are defined in Fig. 14. The e{z) curves represent the actual
variation in dielectric constant. Full and dashed lines refer,
respectively, to |4 ()| and (4,(s) ]| [see (58)].

Another interesting feature is that the distribution of
the electric field has no direct relation to the spatial
variation of the dielectric constant within the medium.
In fact, it is seen in Fig. 15 for diagram D, for example,
that the field has maxima wherever e(z) goes through a
maximum while, for diagram H of Fig. 16, the field
possesses zeros at the same locations. Moreover, in the
unstable regions (diagram G in Fig. 16, for example), the
extrema of the field are altogether shifted in position
with respect to the extrema of e(z).

The behavior associated with the phase curves of
Figs. 15 and 16 is a simple corollary of the changes in
the field amplitude. Within the pass bands we expect
phase progression with distance to occur within the
cells, and indeed it does, as seen in diagrams D and 1.
In the stop bands and at the band edges the phase is
either constant or it changes discontinuouslv, as ex-
pected. Although there is now no phase progression
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with distance in the cell, we do expect a phase shift per
cell of m7 [see (22)]. The remaining diagrams are all in
agreement with this requirement, with 4, B and C cor-
responding to m=0, 7, F, G and H corresponding to
m=1, and J corresponding to m=2. The actual jumps
of 7 are seen to occur precisely at the zeros in amplitude,
indicating merely that the fields change sign as one
passes a point of zero amplitude.

VI. ConcrusroNn

The modes of propagation in an infinite medium
possessing a sinusoidally stratified dielectric constant
were shown to be of two different types. These are 1)
modes which are associated with pass bands of the
medium: these consist of an infinite number of space
harmonics, each of which is in the form of a uniform
plane wave that propagates at a different angle in the
medium, and 2) modes which are associated with stop
bands of the medium: these also consist of an infinite
number of harmonics, but now all of them propagate
only along the striations formed by the modulation in
the medium, and they vary exponentially in a direction
normal to these striations.

The dispersion curves for the infinite stratified me-
dium are obtainable by means of a simple geometrical
construction involving a stability chart customarily
used for Mathieu functions. This construction was ex-
tended to account for propagation properties in certain
bounded, rather than infinite, configurations. One of
these structures consists of a waveguide containing a
dielectric which is modulated in the longitudinal direc-
tion; it then turns out that propagation is possible at
frequencies for which the unmodulated waveguide
would be below cutoff.

The aspects of small modulation were treated at
length for both the infinite and the bounded configura-
tions. Simple analytical solutions for the modes and
their fields were presented for the pass bands. The modes
are then given essentially by the fundamental and the
two closest space harmonics, while the higher space
harmonics vield negligible contributions.

The field within a unit cell of the modulated medium
was calculated for small and large” modulation in both
the pass bands and the stop bands, as well as at the
band edges. As expected, the space harmonics possess
amplitudes which are equal in pairs in the stop bands;
the field distribution is then in the form of a damped
standing wave. In the pass bands, the felds are non-
decaying and every cell introduces a net phase shift
which produces the propagation associated with these
bands. It is interesting to note that the shape of the field
in a unit cell bears no direct relationship to the varia-
tion of the dielectric constant within the cell except at
very low frequencies.




