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Summary—The dispersion properties ad the fields of electro-

magnetic waves are investigated for propagation in a stratified in-

finite medium. The stratification is characterized by a dielectric

constant which, along one coordinate, is modulated sinusoidally

about an average value. A systematic and comprehensive study is

presented for the case of Hmodes for which the pertinent wave equa-

tion is in the form of a Mathleu differential equation. The modes and

dkpersion characteristics are analyzed in terms of a “stability”
chart, which is customary in the study of the Mathleu equation.
Results are obtained for an unbounded medium and for a waveguide
filled with the modulated medium. Also, the reflection occurring at

an interface between free space and a semi-infinite medium of thk

type is examined. In addition to these rigorous results for arbitrary
values of modulation, simple analytical expressions are given for all

of these cases where the modulation in the dielectric is small. It is

shown that the fields are then expressible in terms of the funda-
mental and the two nearest space harmonics. The fields within a unit

cell in the stratified medium are calculated for both small and large

modulation and for frequencies up through the second pass band.
It is of interest that the variation of the fields is not, in general, sim-
ply related to the variation of the dielectric constant within a cell.

1. INTRODUCTION

T

HE STUD1’ described herein deals with the prop-

agation of electromagnetic waves in a medium

possessing a dielectric constant which is sinus-

oidally stratified along one coordinate. The interest in

this specific problem was stimulated by several topics

to which the present work either has direct application

or serves as a basis for further developments.

A first area of application is concerned with electro-

magnetic wave propagation through a compressible

medium which is influenced by acoustic or other

mechanical waves. As an example, the results are appli-

cable to acoustically-modulated plasma media in the

range of frequencies above the plasma frequency up. A

second area of application regards the stratified medium

as a first step in the analysis of a sinusoidally-modulated

dielectric slab antenna which emplc)ys a layer of the

above mentioned medium. Aside from the motivations

and possible areas of application, the case investigated

is a canonical one in the theory of wave propagation in

periodic structures. The systematic and comprehensive

treatment contained herein of both the propagation

characteristics and the field distributions should there-

fore be of value in itself.
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The propagation of waves in periodically-stratified

media was discussed as early as 1887 by Lord Rayleigh,l

who recognized that this electromagnetic problem was

characterized by the Hill and Mathieu differential equa-

tions and who analyzed some of the properties of these

equations. It should also be mentioned that,, both before

and after Lord Rayleigh, the Hill and Mathieu equations

were investigated in connection with other applications,

such as the vibrations of strings and sheets with specified

mass distributions, the trajectories of certain celestial

bodies, the oscillations of elliptic membranes and many

other related topics. At a later stage, the M,athieu equa-

tion was also considered in connection with modes

guided by elliptic waveguides, scattering by elliptic

cylinders, the theory of frequency modulation, scatter-

ing by periodic crystal lattices and many other physical

phenomena.

Most of the studies mentioned above were concerned

with the purely periodic type of solutions of Mathieu

and Hill’s equations, while the nonperiodlic solutions

were analyzed less extensively. These nonlperiodic func-

tions relate to either stable or unstable physical con-

figurations. Among the earlier investigators, Struttz

analyzed these functions, applied them to an atomic

grating subject to a periodic sinusoidal potential and

then briefly mentioned the significance and application

of the Mathieu stability charts. These stability charts

were considered in greater detail by van der Pol and

Strutt3 in connection with particles in force fields which

are characterized by sinusoidal and rectangular periodic

variations.

A direct application of these stability charts to waves

in periodically-modulated media was made by Brillouin,4

who also pointed out the relationship between these

stability charts and the dispersion curves for the modu-

lated media. The extensively-studied periodic solutions

to Mathieu’s equation are found to apply only at the

band edges, while the nonperiodic functions describe the

behavior within the pass and stop bands. A portion of

the present paper also employs the stability charts to

~ Lord Rayleigh, ‘(On the maintenance of vibrations by forces of
double frequency, and on the propagation of waves through a me-
dium endowed with a periodic structure, ” Phil. Msg., vol. 24, pp.
145-159; August, 1887.

z M. J. O. Strutt, “Zur Wellenmechanik des Atomgitters,” Ann.
d.r Phys., vol. 86, no. 10, pp. 319-324; 1928.

3 B, van der Pol and M. J. O. Strutt, “On the stability of the solu-
tion of Mathieu’s equation, ” Phil. Mug., vol. 5, pp. 18–38; January,
1928.

1 L. BriIlouin, “Wave Propagation in Periodic Structures,” Dover
Publications, Inc., New York, N. Y.; 1953.
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determine the dispersion characteristics, but treats the

problem in more detail and considers a number of addi-

tional aspects. This paper also includes detailed discus-

sions on features which have not been previously treated,

such as the properties of the various space harmonics

and the total field behavior under various conditions.

Explicit and simple analytic expressions for the dis-

persion characteristics and the field behavior in the

range of small modulation amplitude are also given here.

The present study starts with the consideration of the

wave equation in an infinite sinusoidally-modulated

medium, and it is shown that, for E modes, this equation

may be cast into the form of a Hill’s differential equa-

tion; for H modes, on the other hand, the wave equation

is a Mathieu differential equation, which is a particular

case of Hill’s equation. The discussion is then restricted

to H modes since these are described by the simpler

Mathieu equation. The properties of the Mathieu func-

tions and the electromagnetic modes which they repre-

sent in the present case are discussed in Section III

along with some examples of modes in bounded, rather

than infinite, structures. The aspects of small modulation

are treated at length in Section lV and analytical re-

sults are presented. The field within a unit cell of the

stratified medium is calculated in Section V for both

small and large modulations; in addition, the detailed

field distribution within a waveguide filled with such a

periodically-modulated medium is plotted for a variety

of frequencies.

II. FORMAL WAVE SOLUTIONS FOR H MODES

The geometry of the medium considered is shown in

Fig. 1. This medium is assumed to extend to infinity in

all directions and to possess a relative dielectric constant

( z)e(z) = er l—Mcos2Tr —
d

(1)

where c, is the average value of e(z) and A!l is termed the

modulation index. The medium can therefore be visual-

ized to consist of striations parallel to the xy plane and

spaced a distance d apart.

The wave equations to be satisfied

tions are then

VZE + k,2c(z)E = O

Vc(z)
V’H + ko’E(z)H + ~ x (v

by the field solu-

(2)

XH)=O (3)

where E and H are, respectively, the electric and mag-

netic field vectors, ko = co(wOeJ1/2 is the intrinsic wave-

number of free space, and a time dependence e–i”t is

assumed.

The field may be represented in the form of super-

positions of H and E modes, with

H modes: E = EV; ilU=Ez=Ez=O

E modes: H = H,; EU=HZ=HZ=O.

x

Id-

May

-z

Fig, l—Geometry of the stratified (modulated) medium.

Furthermore, it is assumed that no variation exists

along the y coordinate (d/dy= O). Eqs. (2) and (3) then

reduce to

V2EU + ko2e(z)EU = O (4)

1 ck(z) dHg
V’HU + k02e(z)HU – —.—. — = o. (5)

e(z) az dz

Hence, (4) and (5) are, respectively, the wave equation

for H and E modes. Since (5) has a term which is absent

in (4), the latter equation is simpler and its solution is

more straightforward. In the present paper the treat-

ment is restricted to II modes.

Since (4) has coefficients which are functions of z only,

one may assume solutions in the form

E,(x, z) = Z(k,; z)e’kt’. (6)

From this separation of variables, one obtains from (4)

and (1)

[(); 2+ko’e, – k,2

1- ko’+ikf COS2T; Z(k,; Z) = O. (7)

It is convenient, at this stage, to introduce the following

notation:

K,,2 = kozer — k$z (8)

M kod ‘

()

q=_. —. .6,
27r

x z
xf=7r-J Z’=r—.

d d

(9)

(lo)

The quantity K. is recognized as the propagation wave-

number in the z direction which would be present in a

uniform medium of dielectric constant cr. When these

changes in notation are substituted into (7), one finds

[(i3’+(+Y-2’c0s2z’lz@’z)=o ’11)
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This last equation is the canonical form of Mathieu’s

differential equation; its solutions may be expressed in

the Floquet form

Z(k?,; z’) = e* ’”’P(k,; .2) (12)

where P(kt; z) is periodic in z with a periodicity of d.

The term K is termed the characteristic exponent and is

a single-valued function of both Ku and q; K is clearly a

propagation wavenumber for waves t raveling in the ~ z

direction, and only the positive sign need be retained in

(12) in order to determine the modes in the given infinite

geometry. The periodic function P(kt; z) may next be

expanded in the Fourier series

P(kt; z) = ~ aflei”@f~Jz (13)
.=—m

where the coefficients a,, = a.(kt) are dependent on the

separation variable ki.

One realizes that when no modulation is present

31= O, and therefore q in (11) also vanishes. Then all the

coefficients a% vanish except au, and K becomes K = Ku;

hence (8), i.e.,

KU7. = kOZe, — k~z

represents the dispersion relation for the unmodulated

medium. For finite values of M, on the other hand, the

dispersion relation is more complicated and is obtained

in the following manner.

Introducing (13) into the Nfathieu equation (1 1), one

obtains

1
– q(e2’” + e–z’”) ane2in” = O. (14)

Since the above must hold for any value of z’, (14) can

be written as an infinite set of homogeneous equations

in the form

a._l + D,,am + an+l == O (15)

where

(:+2’’)+3
[),, =

!?

2mr 2

()
K+— — KU2

d
—

Mk02e,/2 ‘ ‘
(16)

Employing an iterative process on (15), one obtains the

two continued fractions5’e

5 ~\T, ~V. &f&rhlallj “Thenry and Applic,ltion of Mathieu Func-
tions, ” Oxford Uni~-erslty Press, Oxford, E@and; 1951.

‘J. Meixner and F. W. Schafke, “h!athleusche Funktionen and

Spharoidfunktionen,” Springer-Verlag, Berlin, Germany; 1954.

an–l D. ] Dn~,

am
-1

1

9

1
—— —

an+l D. – Dn_l

which, when combined, yield

1
1 1

n.= –—

ax
._ 4. A-#.. e. (17a)

D%h2

---1
1

D.-z “–
. . ~~ (17b)

. . . .

,J+_! L..
D.-l

.
D.-z

(18)

The last expression is the required dispersion relation

since it is essentially an equation for K ==ef(KU, q). The

continued fractions involved in (17) and (18) can be

shownG to converge if I D.] ~ 2 for n > IV, where N is a

finite integer. An inspection of (16) shows that this con-

dition is always satisfied for the case considered here.

The value of K may therefore be computed for any given

K,, and q; a calculation of this type is given elsewhere. T

When the appropriate value of K is thus obtained, all the

possible field solutions are known by means of (6), (12),

(13) and (17).

Calculations for the dispersion relat~on (18) are very

scarce in the literature. When Kd/Tr = 7 (r== O, + 1,

i2, . . . ), the solution given by (12) is termed a

Mathieu function. These functions are of specia]l interest

for problems involving elliptic geometries and they have

been extensively tabulated.’ However, for Kd/!r not an

integer or for complex values of this variable, very few

tabulations have been carried out ;6,9 also, these calcu-

lations were performed for restricted ranges of the

parameters q and KU, so that their application is some-

what limited.

J 11. CHARACTERISTICS OF THE H MODE !SOLtJTIONS

In Section II the wave solutions for H modes were

found to be of the form

where

2?Lir
Kn=K+—–

d
(20)

and the coefficients a,, are determined from (17) in terms

of a 0. The evaluation of ao itself is dependent on a

normalization condition.

7 ‘f’. ‘1’amir, “Characteristic exponents of l~fathieu functions, ”
Math. Com.put., vol. 16, pp. 100-106; January, 1962.

s National Bureau of Standards, ‘{’~ables Relating to Mathieu
Functions, ” Columbia LJniversity Press, New York, h?. Y.; 1951.

g S. J. Zaroodny, ‘(An Elementary Review of the illathieu-Hill
Equation of Real Variables Based on Numerical Solutions, ”
Ballistic Research Lab., Aberdeen Proving Ground, Md. Memo.
Rept. No. 878; April, 1955.
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Eq. (19) is a solution of the wave equation (4) and

therefore represents a mode of propagation in the z

direction for the medium considered when the “trans-

verse)’ wavenumber kt is prescribed. Alternatively, when

K and d are prescribed, solution (19) represents a mode

of propagation in the x direction (along the striations)

with propagation wavenumber k~. The former mode

evidently consists of an infinite but discrete number of

space harmonics, each such space harmonic being in the

form of a plane wave propagating at an angle

(21)

with respect to the xy plane, provided both K,, and k t are

real. When either Km or kt is imaginary, the waves have

an amplitude which must decay in the z or the x direc-

tion, respectively. One also notes from (19) and (20)

that the propagating or decaying character of the waves

is the same for each and every space harmonic.

The relation between KU, q and K can be illustrated in

the form of a “stability diagram” which is customary in

the study of the lMathieu equation.4–g This chart may

be computed from relations given in the preceding sec-

tion and described elsewhere. T The relation between the

parameters K,,, K and q is then shown in Fig. 2.10 The

shaded areas in Fig. 2 are the so-called ~~stable regions”

wherein K is pure real, as indicated in the figure. The

term “stable regions” refers to the fact that, if K lies

within such a region, the solutions of the hfathieu equa-

tions are bounded for any z. Outside the stable regions,

K is complex and its value is

‘i’?L7r

*K. T+ ia (WZ=o, l, z,...) (22)

+

>

10

\
—-

, ‘\ \ .:

+=,4,9, ‘\ ‘>

110, ,0

-2 -1

7.

Fig. 2—Mathieu stability diagram. The curves in the unstable
(unshaded) regions are approximate.

10 The stability diagram is seen to consist of curves drawn in a ~
w (K.d/7T)2 with ~d/r itself as a variable parameter. To abbreviate
the notation, this diagram will be referred to, in the discussion below,
as the q vs ~u [rather than (~ud/r2) ] diagram.

where m is the value of ] Kd/~ I at the boundaries of the

appropriate regions and a is pure real, The + sign for

K in (22) is due to the fact that the curves in Fig. 2

essentially determine relationships for K2 rather than K.

These regions with complex values of K are termed “un-

stable” in the literature since one of the values for K

yields solutions which are not bounded at infinity. It

should be recognized, however, that the term “unstable”

is not appropriate; in actual physical situations wherein

the fields extend to infinite values of z, a radiation con-

dition is required which then merely means that the un-

bounded solution is rejected and only the decaying one

is retained.

It is noted that the value of K for the stable regions is

given by

i(d
m< — <m+l (m= 0,1, 2,...) (23)

T

so that the value of m may label the appropriate regions,

with m = O denoting the region containing the origin,

while increasing values of m refer to regions which are

progressively removed from the origin,

To obtain some insight into the character of the

modes given in (19), let us now look at a specific case

as prescribed by specific values of e,, ill, d and ko, while

k, varies. It is then clear, from (9), that this specifies a

value of q which is constant, and one therefore needs to

consider points along a line parallel to the KU axis, such

as the dot-dashed line shown in Fig. 2.

For very large real values of k~, the relevant point for

K is in the unstable region to the left of the curve K = O.

I-Ience, from (22) with m = O, one has a field with an

exponential term in z. In general, the solution in an un-

stable region may be written

Z(kz; z) = e-a’ei~~fz/~jP(kt; z)

= e–”z~(k~; z) (24)

where }(kt; z) is a periodic function in z with period d

or 2d for even or odd values of m, respectively. For

simplicity, only the positive sign for K is considered in

(22), so that (24) refers to a wave progressing in the

positive z direction; the expressions pertaining to waves

progressing in the negative z direction may be derived

by a suitable change in the sign for K. It can be showne,s,ll

that $(ki; z) is either a pure real or a pure imaginary

function, but is not complex. Consequently, the Fourier

harmonics in ~(k,; z) couple in pairs and form a standing

wave.

Hence, in all unstable regions, the modes are in the

form of an exponentially damped standing wave in the

z direction and are propagating in the x direction only.

This type of wave therefore consists of space harmonics

which coupIe in pairs so that they propagate along the

11T, Tamir, H. C. Wang and A. A. Oliner, ‘Wave Propagation in

Sinusoidally Stratified Dielectric Media, ” Dept. of Electrophysics,
Polytechnic Inst. of Brooklyn, N. Y., Research Rept. No. PIBMRI-
1184-63 ; 1963.
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striations. It is noted also that the wavenumber for each

harmonic is given from (20), with only the positive sign

being retained, by

so that the attenuation coefficient a is the same for

every space harmonic.

When the value of k, is decreased, one reaches a value

for which the dot-dashed line intersects the K = O line;

the field then has the form of a pure standing wave with

no decay along z, and with propagation still along the

striations.

As k~ further decreases, the first “stable” region is

reached in which K becomes real; the harmonics then

propagate in both the x and z directions at angles deter-

mined by (21). By still further decreasing kt, one again

crosses unstable and stable regions and the waves have

the properties of the cases previously discussed. The

number of regions thus crossed is dependent on the

value of kO<~, since, as kt = O, K.2 == k~i, and the point

of interest cannot go beyond this value unless k~ becomes

imaginary.

In order to obtain a clearer picture of the above fea-

tures, it is worthwhile to consider the waves which

would be excited in the periodically-modulated medium

by some typical sources. The following two cases are

physically significant.

A. Line Source Excitation

An electric current line source is assumed to be present

parallel to the y axis and located at x = O and z = k in the

infinite medium of Fig. 1. The field of such a source may

then be expressed by the Fourier integral representation

E(x} z) ==
f

‘j(k,)ei”~ 5 a.e’’”l’-kldk, (26)
—cc n=—m

where, to satisfy the radiation condition, the + sign

must be taken in (22); .f(k J is an anlplitude function in

terms of ki. Both uniqueness and completeness of the

above representation are satisfied if the integration in

(26) is carried out along the real k, axis, in agreement

with the theory of Fourier transform representations.

The field is therefore properly visualized as being made

up of the waves previously considered, when kt varies

between infinity and zero.

One therefore concludes that the ~leld of a line source

consists of a continuous spectrum of modes character-

ized by the transverse wavenumber kt. Each mode con-

sists of space harmonics in the form of plane waves. All

of the space harmonics associated with any one particu-

lar mode either propagate along the striations or travel

at various angles with respect to these striations. In the

latter case, the plane waves are homogeneous; in the

former case, the fields decay away from the striations

closest to the source, this decay being the same for all

the harmonic components.

The total energy radiated by a line sc]urce therefore

contains a part which is guided along the striations;

consequently, the region formed by the striations closest

to the source acts as a duct. ‘l’his is nut unexpected,

since it is known that a dielectric slab may ,guide surface

waves. I Iowever, in the case considered here, the waves

which are guided along the striations form part of a

continuous set rather than the discrete surface wave

contributions that occur on a single dielectric slab.

B. Plane Wave Excitation

One cannot assume the existence of a. singlle homo-

geneous plane wave in the modulated medium since

such a wave is not a solution of the pertinent wave

equation (4). Nevertheless, one may consider that such

a plane wave is incident on a semi-infinite medium, as

shown in Fig. 3, and thereby excites a field in the me-

dium considered. The modulated medium is taken to

extend only for positive values of z, and a plane wave

is assumed to be incident a.t an angle O on the xy plane

interface from a medium with a relative dielectric con-

stant cl. Since H modes are considered, the electric

vector Z3 is taken parallel to the interface between the

two media at z = O. No attempt is made here to solve the

complete problem; only the character of the field in the

modulated medium is considered.

x

—

—

/Lo: ●(z)

II

—+ z

Fig. 3—Geometry of the semi-infinite modulated medium.

In contrast to the line source problem, the present

situation has a fixed value of k~ given by

k, = kodel sin O (27)

which yields, from (8),

K. = ??o(6, — 61 Sinz /j’)1/~. (28)

Let us introduce the angle @ shown in Fig. 4 as

()

M 1
tan~ = q ~ = ~.——–—, (29)

1 – -: !sinz fl
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.d -

Fig. 5—Dispersion curves (Brillouin diagram) for the semi-infinite
medium: CI=6,; tan @= Ilf/2 COS2O= 0.1.

Fig. 4—Graphical construction to obtain dispersion curves in terms
of a given incidence angle.

using (28) and definition (9) for g. ‘I’he locus of wave-

numbers K which are excited in the modulated medium

is therefore given by a straight line through the origin

and at an angle + with respect to the (Kud/~)z axis. Then,

as frequency varies while JJ and the incidence angle 8

remain constant, KU and q vary along this straight line

and the appropriate value for K may be read off the

g vs KU diagram of Fig. 4.

One may then obtain a dispersion curve for any

specified values of ~f and 6. Real values of K will cor-

respond to solutions which propagate across the stria-

tions, while complex values of K correspond to exponen-

tial decay, thus resulting in pass and stop bands, re-

spectively, for propagation perpendicular to the

striations.

The following cases are then relevant:

1) M= O: When no modulation is present, @= O, the

locus for the dispersion curve runs along the positive

real KU2 axis and no stop bands occur for e, ~ el. This re-

sult is obvious since, if 31= O, the medium to the right

of the interface is an ordinary dielectric into which

waves are propagated by ordinary refraction of the in-

cident wave. For e, <cl, certain angles O will make the

expression for tan @ in (29) negative. Then no propa-

gation occurs for any frequency since the dispersion

curves run along the negative real KU2 axis. This situation

obviously occurs at and above the critical optical angle

for which total reflection of the incident wave is

obtained.

In order to disregard the possibility of total reflection,

the following cases are taken for el < e, only:

2) M<< 1: The angle q$ is then very small and one

obtains broad pass bands and narrow stop bands, as

shown in Fig, 5. The latter bands occur in the neighbor-

hood of frequencies whose free-space wavelength ~, is

given, from (28), by

2T-

t

?“ -
:0

0 T Zr 37 47r 57T 677
.d -

Fig. 6—Dispersion curves (Brillouin diagram) for the semi-infinite
medium: c1= +; o = tan–l (M/2 COS2@ =300.

2d _
10 g — ~q. – Cl sin2 @ (wJ= 1,2, 3,...). (30)

m

This result is analogous to the Bragg effect in crystal

lattices.

3) .!l <1: The angle @ is no longer small and the stop

bands increase in width, as shown in Fig. 6 for a value of

@= 30°. It is realized that for ordinary dielectrics

e(z) ~ 1, which yields, from (1),

C, —-l
M<—. (31)

Cr

This condition implies a maximum value of ~ for any

incidence angle O and dielectric constant el.

It is recognized that for plasma media e(z) may be

less than unity or even negative; however, these values

of the relative dielectric constant are a function of fre-

quency. The above geometrical construction for finding

the dispersion curves has assumed that e(z) is independ-

ent of frequency so that, for plasma media or other dis-

persive media, this procedure would have to be modified.

4) ilK# O; O*r/2: As the angle of incidence O reaches

a value of m/2, the angle I#J takes on the maximum of

d = 7T/2. The pass bands then become very narrow while

the stop bands are relatively very broad.

The above results show that the dispersion curves for

plane wave excitation are similar to those for customary

periodic transmission lines. It should be noted that the



1964 Tamir, Wang and Oliner: Propagation Stratified Dielectric Media 329

dispersion curves for the medium discussed here may

be found exactly from the g vs Ku diagram; for most

examples of periodic transmission lines, however, the

dispersion curves are found only by assuming certain

simplifying approximations which are necessary in view

of the greater complexity of the problem.

C. “ Waveguide” Excitation

In Sections II I-A and III-B, the waves considered

were those for which the transverse wavenumber kt is a

function of frequency. In waveguide practice, the LIsual

approach is to have kt prescribed by the boundary con-

ditions in the cross section. For an infinite medium, the

wavenumber k t is continuous y variable and the ap-

proach in Sections II I-A and 11[I-B is appropriate.

Nevertheless, it is of interest to consider the case in

which the modulated medium is contained between two

conductors, both parallel to the yz plane, as shown in

Fig. 7. The propagation direction is clearly the z direc-

tion, and the medium is uniform in the xy cross section,

with the same value of kt applicable for all values of z.

Since the electric field is parallel to the y direction, the

field distribution and the propagation characteristics

are unaffected by the placement of two additional per-

fectly conducting planes at right angles to the first

two, forming a rectangular waveguide. The pertinent

mode set in this rectangular waveguide is that of the

H%O modes. It is shown below that some propagation

features appear here that are absent for the infinite

medium.

One recognizes, for the geometry of Fig. 7, that the

wavenumber kt cannot vary continuously but has only

the discrete values

,ktr=: (r=o, 1,2, ...). (32)

To obtain dispersion curves for this, case it is easily seen

that, as frequency varies, the quantity

()
2 (2 M

tan@’= Z ———=j- (33)
d Ku’ + kt,z

is a constant for any given M. Eq. (33) is then the

equation of straight lines as shown in Fig. 8. This case

is similar geometrically to that for plane wave excita-

tion, discussed previously, except that the straight line

is shifted from the origin. In addition, an entire family

of such lines must be considered in order to accommo-

date the various values of k,,, all these lines being

parallel to each other.

The values for the dispersion curves are now read off

from Fig. 8 in the same manner as those obtained for

plane wave excitation. It is clear that now the first pass

band starts at a finite, nonzero frequency. When JI# O,

this is the cutoff frequency of the unmodulated wave-

guide. b-or ilI# O, the first pass band starts at a fre-

quency which is lower than the cutoff value for the un-

X

—.

———-—+ z

Fig. 7—Rectangular guide filled with a h,rrgitlldinally-
mod ulated dielectric.

k d) \
.4.- ktl d-—

77 77

Fig. 8—Graphical construction to obtain dispersion curves for the
waveguide filled with a n-odulated meclium.

modulated waveguide. This feature is present for all the

modes and is determined only by the shape and slope of

the K = O curve in the q vs K,, diagram, as may be seen

by inspection of Fig. 8.

The above behavior is illustrated in Figs. 9 and 10,

which show dispersion curves for the first mode (k~ = k~l)

for various values of 11. It is clear that the arguments

associated with (31), limiting the value of .M, are also

applicable here, and that 0’ is correspondingly limited.

It is then obtained that, in the limit clf e, very large,

JI= 1 and the maximum value of the angle@’ is given by

The dispersion curves for this specific ;angle are given

in Fig. 10(a).

As noted above, when M+ O propagation is possible

at frequencies for which the guide containing an un-

modulated medium would be below cutoff. This behavior

is evidenced in Fig. 10(b) in which the variation of KU vs

K is shown. The lower part of the curve then cor-

responds to propagation in the modulated guide for

which KU is imaginary, i.e., if no modulation were present

the wave would be below cutoff.
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Fig. 9—Dispersion curves (Brillouin diagram) for the waveguide
filled with a modulated medium: M= 0.2; kjd = r.
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Fig, 10—Dispersion curves for the waveguide filled with a mod-
ulated medium: M= 1.0: ktd = rr. (a) Brillouin diagram. (b)
Propagation waveuumber . in the’ waveguide contdning the
modulated medium vs propagation wavenumber K. in the un-
modulated waveguide.

IV. ANALYTIC RESULTS FOR SMALL M ODUL~TION

So far, the entire discussion of the wave features for

a modulated dielectric medium followed from graphical

constructions based on the q vs KU diagram which in-

directly characterizes the functional properties of the

modes in such a medium. One may also wish to obtain

these results in an analytic form; however, because of

the Mathieu functions involved, a simple analytic result

is not obtainable unless some simplifying restrictions are

imposed.

In this section certain restrictions are stipulated so

that practical analytic expressions are obtained for the

dispersion relation and the amplitudes of the various

space harmonics. One may then derive complete analytic

solutions for the problems of an incident plane wave on

the semi-infinite modulated dielectric, treated in Section

11,1-B, and for the waveguide containing that dielectric

discussed in Section III-C. The restrictions are, how-

ever, of such a nature that these results apply to the

pass bands only, and then not too close to the band

edges; in addition, the modulation index must be re-

stricted to sufficiently small values. For more complete

results, appropriate for less restrictive conditions, see

Wang and Tamir.’2

A. Approximate Relations for the Pass Bands

An inspection of the Mathieu stability diagram

(Fig. 2) reveals that, within the stable regions (pass

bands) and for small values of q, K is real and very

nearly equal to Ku. one may then write

i(d i(.d
— =—-+A (35)
T n-

where A is a very small quantity. Then, for D. of (16),

M (Kud/~ + n)
D. E (n # o)

q
(36)

hud
DoG—A. (37)

qr

Since q was assumed to be very small, one has that

[D,, / >>1

so that the dispersion relation

approximation,

DO!+

(n # o), (38)

(18) becomes, to a first

1
—.
D_ I

(39)

Result (39) implies that one need retain only three space

harmonics (n= O, i 1) in the dispersion relation. By

introducing (35), (36) and (37) into (39) and retaining

first terms only, one obtains this dispersion relation in

the form

K 1
—=1+ ()~!l’—.—

1 – (K,,d/7r) 2 f(ud 2 “
(40)

KU

This result for the dispersion relation is valid in the pass

bands only, and not too close to the band edges; its ac-

curacy is discussed quantitatively by Wang and

Tamir.12

One recalls that g, which is defined by

(41)

is assumed to be small for the above calculations. One

sees that this condition is satisfied either by small values

12H. C. Wang and T. Tamir, “Closed form dispersion relations
for a sinusoidally stratified medium, ” to be published.
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of M or by small values of d/X. Hence, if d/A<<l, the

modulation in the dielectric may be quite appreciable.

Since, to the approximation above, only the funda-

mental and the + 1 and — 1 space harmonics need be

retained, the total field of a mode characterized by kt is

given by the first three terms in (19), namely,

E.(X, z)

——
[ 1aoei(k’’+’”) 1 + 3 ei(2T/d)’ + -a<e–’(2”/’z)’ . (42)

ao ao

In view of condition (38), only the first term need be

retained in (17), so that one obtains for the ratio of

amplitudes

al q 1
—— —

a. ~ (1 + Kji ‘

a_l q 1
—— —

a. ~ (1 – Kud/7T) “

(43)

(44)

When (43) and (44) are substituted into (42) and terms

are combined, the expression for tihe field becomes

r 27r Kud 21r 1cosyz —i—-sin~z
I

1-
d

II.(x, z) = aO 1 – ~.
T d

1 – (Kud/7T) 2 J

. ~i(,kt.z+ .:) (45)

where K is given by (35) and (40).

With no modulation present, K = K,, and q = O so that

(45) is reduced to the simple form of a plane wave

traveling at a certain angle. When the medium is per-

turbed by the introduction of a small modulation, the

change is reflected in the term containing q in (45). The

perturbation may then be regarded as a small sinusoidal

variation of the amplitude of the unperturbed wave.

This variation is the same within every cell of period d

and is the form of a sinusoidal curve which is shifted

from the origin. The actual shape of the field within a

cell is discussed in Section V, in which the field is also

calculated numerically.

One notes that, for given parameters e,, M, k, and u,

the solution for the field is generally obtained from (45)

since the other parameters (K. and q) are given in terms

of the prescribed constants. The value of an is deter-

mined from a normalization condition or may be arbi-

trarily set to equal unity. Of course, the result thus

obtained is valid only if the prescribed parameters e.,

Jf, k, and u satisfy the restriction regarding small values

of q in (41).

It is emphasized that all of the above results hold

within the pass bands only and are not applicable to

the stop bands. For the latter, K is COIIIPICX and it IT1~y

be showns’”” that the amplitude of some particular

harmonic is always equal to that of the fundamental

wave (aO) in the stop band; large errors may then result

if only the O and i 1 space harmonics are retained. For

approximations and analytic results for the band edges

and for the stop bands, see Wang and Tamir.12

B. Plane Wave Excitation

Result (45) may now be applied in order to obtain a

complete solution to the problem of Section II I-B in

which a plane wave was incident from an unmodulated

medium upon a modulated one, as shown in Fig. 3.

In this case, the boundary condition at z = O is satis-

fied by a single mode specified by (27), so that the field

in both regions is completely determined by a reflection

coefficient 17 at the interface. This reflection coefficient

is given by

z,(o) – ZI
r=

z,(o) + 21
(46)

where 21 is the characteristic impedance of a trans-

mission line in the z direction representing a wave

traveling in the unmodulated medium (z <0), and 22(0)

is the impedance loading that line at z = O. Recalling

that we are dealing with H modes, one ha~s

(47)

The impedance 22(0) may also be viewed as a character-

istic impedance for the modulated medium, but asso-

ciated with a particular choice of unit cell, i.e., the inter-

face between the two media specifies one end of the unit

cell (the other is determined by the periodicity). A dif-

ferent location of the interface (with respect to the

modulated medium) would result in a different equiv-

alent characteristic impedance. We recognize that in the

modulated region there exists only a fen-ward-traveling

wave, so that

EU2(X, Z)

z,(z) = –

H.,(3, z)”

(48)

where the subscript 2 indicates the modulated region

(z> O) and the negative sign arises because of the co-

ordinate system chosen. The magnetic field H~2(x, z) is

given by

1 13Eu2(z, z)
27.2(%, z) = – ~

z up f3z ‘“ “

(49)

The electric field EV2(X, z) in the modulated region may

be written in the form (45) in which only terms to the

order of g were retained. Hence, we fincl from (45), (48)

and (49) that

r 2ir iK.d 2~
cos —z— —-siz —z

L

d T d 1
z,(z) = ~. 1 + ———–—

(~L,d/~)2 – 1 “q 1
(50)

K.

where terms to the order of g only were retained. One

also notes from (40) that K and KU differ by a term in qz,

so that they were taken as K = K. when obtaining the

result of (50).

It is observed that Zz(z) is approximately equal to the

characteristic impedance W.L/K. of an unmodulated
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medium since the second term containing q is small, To

find the reflection coefficient in (46) one needs

[
z,(o) = ~. 1 +

q 1(K.d/7f)2 – 1 “

(51)
KU

When the value of 22(0) is introduced into (46), the

field may be found everywhere. Hence, to within the

approximations considered here, one can obtain a com-

plete solution for the problem of a plane wave incident

on a semi-infinite modulated dielectric.

In particular, it is interesting to find the reflection co-

efficient when the dielectric constant q for the un-

modulated medium is equal to the average dielectric

constant q in the modulated one. Then, for el = G, one

has

Ku = k. = kod cl COS 6, (52)

which yields a reflection coefficient

r=
q/2

—.

(KUd/7T)2 – 1
(53)

Hence, the reflection from the entire senli-infinite modu-

lated region is of the order of q.

We recognize, from definition (1) for the variation of

the dielectric constant in the modulated medium, that

the reflection coefficient solved for above corresponds to

an interface described by Fig. 11(a). If, on the other

hand, we were interested in an interface of the form

shown in Fig. 11 (b), it would be necessary to evaluate

ZZ(Z) in (50) at z = d/4 rather than at z = O. For such an

interface, then, we find

r t(ud
i—q

L 1
z,(d/4) = ~ 1 + T —-

1 – (KJi/T) 2

(54)
KU

and

i t(,,d
—.— .
2T

q

r=— (55)
1 – (KJi/T) 2

when El= E,. At low frequencies, where Kud is appreciably

smaller than ~, the reflection from the interface of

Fig. 11 (b) is seen to be less than that for Fig. 11 (a), in

agreement with intuition.

If the dielectric constant variation were as in Fig.

11 (a), but inverted at the interface, we would find that

the reflection coefficient magnitude is the same as that

for (53), but that the phase is different by m, as we

might expect. It is evident that the interface may be

chosen to correspond to any point in the modulated

medium, and that the above analysis can be extended

in straightforward fashion to include the case of an arbi-

trary slab of this modulated medium.

The above results also hold for the case of the wave-

+--
, ,0 z-

(a)

-+- [
,=+. z---

(b)

Fig. 1 I—lrariation of the dielectric constant near the interface of the
semi-infinite modulated medium. Two different interface situa-
tions are shown.

guide containing a modulated dielectric which was con-

sidered in Section III-C, by simply taking kt as the

actual cutoff wavenumber in the waveguide rather than

the value used in (27). One can therefore solve the

problem of wave propagation in such a waveguide for

infinite, semi-infinite or finite lengths of the modulated

medium.

V. THE FIELD DISTRIBUTION WITHIN A UNIT CELL

Most of the above discussions were concerned with

the over-all, or macroscopic, propagation character-

istics of waves in these modulated media. In order to

obtain a more complete picture of the properties of

these waves, this section considers the detailed field

distribution within a unit cell of the sinusoidally-

modulated medium, These calculations show that varia-

tion in the form of the fields as the frequency is changed

and demonstrate that the field distribution need not

follow the spatial variation in the dielectric constant.

In order to determine the variation of the electric

field within a cell of length d in the sinusoidally-

modulated medium, a specific dielectric is chosen, char-

acterized by arbitrary but constant values of e,, d and

M, with the frequency u taken as the variable. To gain

some insight into the shape of the field for a given mode,

we shall first discuss certain relations between the am-

plitudes of the space harmonics and then explore the

field shape in the range of small modulation index M.

We will find that the field distribution varies consider-

ably from one pass band or stop band to another. Be-

cause of the availability of relationships between the

harmonic amplitudes in the stop bands, we will first

examine the field behavior there and then proceed to the

pass bands.

For an unmodulated medium (M= O), only the funda-

mental space harmonic is present while all the other

harmonics are zero (a,, = O for n # O). For small modu-

lations, all the harmonics are, in general, nonvanishing,

In the stop bands (unstable regions), it can be shownll,l~

that the fundamental and the —mth harmonic are equal

in amplitude in the mth stop band. In addition, numeri-

cal analysis shows that the other space harmonics de-
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crease in strength as their harmonic number n is further

removed from either the fundamental or — mth har-

monic, while their amplitudes are equal in pairs; i.e.,

These properties are summed up in I+”ig. 12 which dis-

tinguishes between the following two cases: 1) For m

even, the harmonics are equal in magnitude in pairs,

except for the — m/2 harmonic which does not couple to

any other one. This harmonic is zero in magnitude on

the left edge of the unstable region in the g vs KUdiagram

and is finite on the right edge (these correspond, respec-

tively, to the lower and upper edges of the stop band on

a Brillouin diagram). 2) For m odd, the same behavior

is present except that there is no uncoupled harmonic

and none of the harmonics has a vanishing amplitude.

The electric field may be written as

where A (z) and d(z) are, respectively, the amplitude and

phase shift of E(z). One then obtains for the amplitude

where A ~ (z) is the periodic part of A (z).

In the first unstable region (m= O), the two sets of

lines between n = O and n = – m in Fig. 12(a) coalesce,

with the result that the n = — m = O harmonic results in

a relatively large constant value for ] A ~(z) I and the

+ 1 and – 1 harmonics yield a smalll sinusoidal wave of

period d superimposed on this constant value. For small

JT, the higher harmonics add insignificant contribu-

tions.

For all the other unstable regions (m> O), the dom-

inant terms in (58) are obtained as follows:

I .4P(z) 1’= [a,+ a-me-’’~~(d)][aO*O*-t-a-nYe’’mT(2’d)]

{[

2mir

( )1

a_.
. l+COS —z+arg —– -)

{“
(59)

d ao

One has again a constant term and, in addition, a sinus-

oidal wave of period d/m. Also, since ] a_~ I = I ao \ , as

shown in Fig. f 2, the amplitude vanishes rn times within

a period d. The phase term arg (a. JaO) varies as one

goes from one edge of the stop band to the other, so that

the field pattern within the cell would seem to shift

across the cell as a function of frequency within the stop

band. The next better approximation would include the

~ = + 1 and ~ = — m+ 1 harmonics which yield three—

-m

–rn+l

-m-l -m+2–m-z

II

o

-1

.)-7I--1 ‘l.-\,
.~-l ‘m-7+1

(a)

-m 0

-m+l –1
–m-l

–m+?
-m-? S*

-— II 1---/) I, L-I i__

Fig. 12—Anlplitudes of the space harmonics in an unst,lble region
(stop band). (a) w even. (b) w odd,

o d

Fig. 13—Field distribution for the third pass band or stable region
(located between the unstable regions characterized by m= 2
and m = 3).

d/(m – 1) ]. To the periodic variation of An(z), one has to

add the exponential decay of e–d’ in order to obtain the

actual variation of A (z).

In the stable regions (pass bands), noting that all an

are pure real and that a = O, one obtains for (58)

] .4(z) 1’ = ~ a. ~ a._r cos 27(n -- r) ~- . (60)
n=—cc T=—cc

This is an even periodic function z; however, the various

harmonics do not pair off in a manner similar to that of

the unstable regions described in Fig-. 12. Since ].4 (z) I

still possesses the properties discussed a hove at the edges

of the pass band, we recognize that as one goes through

the mth pass band from one edge to the other, the shape

of the field must vary continuously from a periodicity

of d/(m — 1) to a period icity of d/m. This behavior is

illustrated in Fig. 13.

Although the discussion above was carried out on the

assumption that .Lf is small, the period icity features

must be present even for large values of 31. I-Iowever,

the shape of the field would then differ markedly from

the simple constant and sinusoidal variation obtained

in (59) since the additional harmonics may affect this

sinusoidal variations [of period d, d,f(m + 1) and basic shape considerably.
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(Kud/n )2
-1_ &

A 0.2 -2.4 1. 55i

B 0.-1 .0.4 0. 46i

c 0.735 -0.26 0.0
D O. 8 0.0 0.677
E O. 825 0, 1 1.0

F O. 83 0, 12 1-O. 105i

G L 05 1.0 1-O. 47i

H L 32 2..08 1.0

I 1.49 2.72 L 5

J L 738 3.752 2.0

‘Fig. 14—Parameters for the computed fields. Points A to J relate to
the fields shown in Figs. 15 and 16.

To illustrate the various features discussed above, the

shape of the electric field was calculated for a loaded

waveguide of the type described in Section III-C. The

parameters chosen and the various frequencies for

which the calculations were made are shown in Fig. 14.

The results obtained are illustrated in Figs. 15 and 16;

these figures show the variation of the electric field as

the frequency is varied so that the particular mode

starts in the first unstable region and goes through

stable and unstable regions up to the farther edge of

the second stable region. The regions correspond physi-

cally to the frequency range below cutoff of the loaded

waveguide, the first pass band, the first stop band, and

the second pass band. In the unstable regions (below

cutoff and in the stop band), the amplitude distribution

shown corresponds to the periodic part ] AP(z) I of the

electric field amplitude; the total amplitude 1.4 (z) I is

represented by the dashed lines.

One notes from these figures that the field changes

continuously as the point of operation goes through the

various regions; the general character of the field is

clearly in agreement with the above qualitative analysis.

It is interesting to note that although the modulation

index chosen was not small (M= 0.5), the features dis-

cussed previously are nevertheless strongly present.

As predicted, we find that the amplitude within the

.kaa
d 2d

d 2d

PIIP!J
d 2d

T -
0 I

d 2d

7r

o I

d Zd

‘IA+
d 2d

Fig. 15—Variation of the field in the first unstable (stop band) and
the first stable (pass band) regions. Situations A to E are defined
in Fig. 14. The e(z) curves represent the actual variation in
dielectric constant. Full and dashed lines refer, respectively, to
1A (z) ~ and ]Ap(z) ] [see (58)].

stop band (diagrams E, F, G and H of Fig. 16) goes

through zero once (since m = 1) within a period d, and

that within this stop band the pattern essentially main-

tains its form but shifts across the cell as we go from one

edge of the stop band to the other. At H, additional

space harmonics become significant, thus altering the

field distribution somewhat. The same behavior is also

present within the below cutoff region (diagrams A and

B of Fig. 15), but it is less noticeable there. The approxi-

mate analysis involving only the dominant space har-

monics yields for the below cutoff region a constant

amplitude only (since m = O); the sinusoidal variation is

due to the next higher (n= +1) space harmonics.

Within the pass bands the behavior also corresponds to

that predicted by the above analysis. The amplitude

distribution is an even function of position within the

cell and, as one goes from the lower edge of the band to

the higher edge, the field form for the first pass band

(diagrams C, D and E of Fig. 15) varies from a constant

(m= O, but modulated by the higher space harmonics)

to a wave with one zero within a period d (m= 1), and

the field shape for the second pass band (diagrams H, I

and J of Fig. 16) varies from a wave with one zero per

period (m= 1) to one with two zeros (m= 2).
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Fig. 16—Variation of the field in the second unstable (stop band)
and the second stable (pass band) regions. Situations E to J
are defined in Fig. 14. The e(z) curves represent the actual
variation in dielectric constant. Full and dashed lines refer,
respectively, to /A (s) ] and (A=(s) ] [see (58)].

Another interesting feature is that the distribution of

the electric field has no direct relation to the spatial

variation of the dielectric constant within the medium.

In fact, it is seen in Fig. 15 for diagram D, for example,

that the field has maxima wherever E(Z) goes through a

maximum while, for diagram k? of Fig. 16, the field

possesses zeros at the same locations. Moreover, in the

unstable regions (diagram G in Fig. 116, for example), the

extrema of the field are altogether shifted in position

with respect to the extrema of E(Z).

The behavior associated with the phase curves of

Figs. 15 and 16 is a simple corollary of the changes in

the field amplitude. Within the pass bands we expect

phase progression with distance to occur within the

cells, and indeed it does, as seen in diagrams D and I.

In the stop bands and at the band edges the phase is

either constant or it changes discontinuously, as ex-

pected. Although there is now nc~ phase progression

with distance in the cell, we do expect a phase shift per

cell of m~ [see (22)]. The remaining diagrams are all in

agreement with this requirement, with A, B and C cor-

responding to m = O, l?, F, G and H corresponding to

m = 1, and J corresponding to m =2. The actual jumps

of r are seen to occur precisely at the zeros in amplitude,

indicating merely that the fields change sign as one

passes a point of zero amplitude.

VI. CONCI.USION

The modes of propagation in an infinite medium

possessing a sinusoidally stratified dielectric constant

were shown to be of two different types. These are 1)

modes which are associated with pass bands of the

medium: these consist of an infinite number of space

harmonics, each of which is in the form of a uniform

plane wave that propagates at a different angle in the

medium, and 2) modes which are associated with stop

bands of the medium: these also consist of an infinite

number of harmonics, but now all of them propagate

only along the striations formed by the modulation in

the medium, and they vary exponentially in a direction

normal to these striations.

The dispersion curves for the infinite stratified me-

dium are obtainable by means of a simple geometrical

construction involving a stability chart customarily

used for Mathieu functions. This construction was ex-

tended to account for propagation properties in certain

bounded, rather than infinite, configurations. One of

these structures consists of a waveguide containing a

dielectric which is modulated in the longitudinal direc-

tion; it then turns out that propagation is possible at

frequencies for which the unmodulated waveguide

would be below cutoff.

The aspects of small modulation were treated at

length for both the infinite and the bc)unded configura-

tions. Simple analytical solutions for the modes and

their fields were presented for the pass bands. The modes

are then given essentially by the fundamental and the

two closest space harmonics, while the higher space

harmonics yield negligible contributions.

The field within a unit cell of the modulated medium

was calculated for small and large” modulation in both

the pass bands and the stop bands, as well as at the

band edges. As expected, the space harmonics possess

amplitudes which are equal in pairs in the stop bands;

the field distribution is then in the form of a damped

standing wave. In the pass bands, the Iields are non-

decaying and every cell introduces a net phase shift

which produces the propagation associated with these

bands. It is interesting to note that the shape 01 the field

in a unit cell bears no direct relationship to the varia-

tion of the dielectric constant within the cell except at

very low frequencies.


